
CERES Overview

Bruce A. Wielicki

Joint CERES/ARM/GCSS Session Williamsburg, VA November 3, 2004

CERES Science Team: Phase I (phase II started in 2004)

Bruce A. Wielicki, Principal Investigator

CERES: Integrated Data for Radiation/Cloud/Aerosol

2 to 10 times ERBE accuracy: moving from 5 W/m^2 toward 1 W/m^2
 TOA, surface and atmosphere fluxes

 A radiative 4-D assimilation: integration of surface/ cloud/aerosol/atmosphere constrained to TOA flux

Input Data

CERES Crosstrack Broadband

CERES Hemispheric Scan ADMs

MODIS Cloud/Aerosol/Snow&lce

Microwave Sea-Ice

MATCH Aerosol Assimilation

GEOS 4-D Assimilation Weather (fixed climate assimilation system)

Geostationary 3-hourly Cloud

Consistent Intercalibration

Output Data

ERBE-Like TOA Fluxes (20km fov, 2.5 deg grid)

CERES Instantaneous TOA/Sfc/Atmosphere Flux

- 20km field of view (SSF, CRS products)
- I degree grid (SFC, FSW products)
- Fluxes, cloud & aerosol properties

CERES Time Averaged TOA/Sfc/Atmosphere

- 3-hourly, daily, monthly
- I degree grid (SRBAVG, AVG, ZAVG products)
- Fluxes, cloud and aerosol properties

Summary of CERES Advances

Calibration
 Offsets, active cavity calib., spectral char.

Angle Sampling Hemispheric scans, merge with imager

matched surface and cloud properties

new class of angular, directional models

Time Sampling CERES calibration + 3-hourly geo samples

new 3-hourly and daily mean fluxes

Clear-sky Fluxes Imager cloud mask, 10-20km FOV

Surface/Atm Fluxes Constrain to CERES TOA, Fu-Liou, ECMWF

imager cloud, aerosol, surface properties

Cloud Properties Same 5-channel algorithm on VIRS, MODIS

night-time thin cirrus, check cal vs CERES

Tests of Models Take beyond monthly mean TOA fluxes

to a range of scales, variables, pdfs

ISCCP/SRB/ERBE overlap to improve tie to 80s/90s data.

CALIPSO/Cloudsat Merge in 2005 with vertical aerosol/cloud

Move toward unscrambling climate system energy components

CERES Angular Distribution Models: imager scene properties in CERES hemispheric scanning instrument fields of view

CERES footprint 20 km 2 km 🐷 Surface, aerosol, cloud **Imager Pixel** and atmosphere MODIS on Terra/Aqua properties matched in VIRS on TRMM Space/Time with each CERES field of view Top View Side View 4 Cloud **Height Categories Cloud Properties:** 4. high clouds Fraction 300 hPa -Height layer 2 Category B 3. upper middle clouds *Temperature* Optical Thickness 500 hPa **Emissivity** layer 1 2. lower middle clouds Particle Phase Category A 700 hPa Particle Size Clear 1. low clouds Surface

What time/space scale data products?

Level 2 Instantaneous Data

- 20km nadir fov, 2000km swath
- 10:30am and 10:30pm local time sunsynchronous orbit
- Global coverage twice per day
- SSF: Cloud, Aerosol, Surface prop, TOA fluxes, Simple Sfc Fluxes
- CRS: Full 3-D Radiative assimilation: consistent Cloud, Aerosol, Surface prop., Fluxes for TOA, Atm, Sfc

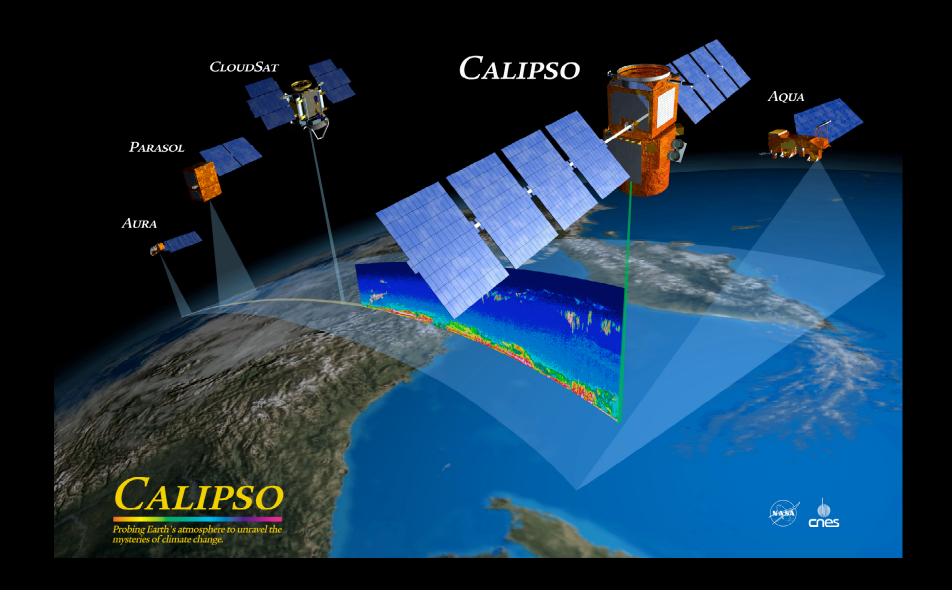
Level 3 Instantaneous 1 degree gridded data

- SFC: gridded version of SSF
- FSW: gridded version of CRS

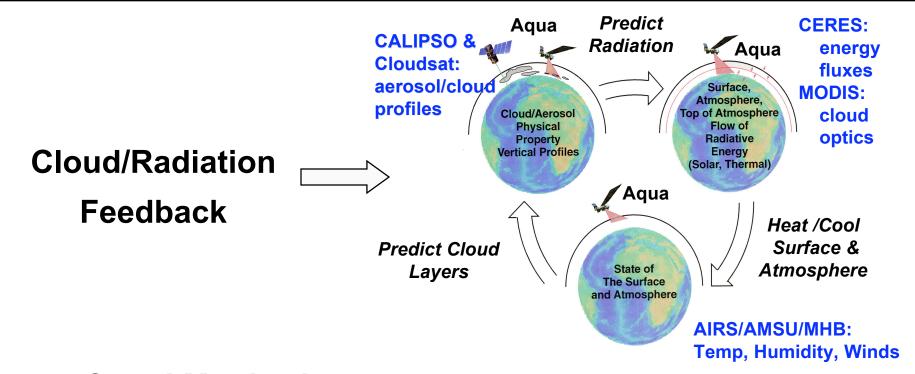
Level 3 Monthly 1 degree gridded data

- SRBAVG: gridded monthly mean, CERES only, CERES+3-hrly Geo available in Dec 2004 for 4 years of Terra (3/00 on), add daily average in spring 05: add Pc/Tau frequency distns?
- SYN, AVG: gridded 3-hourly, daily, monthly CERES only and CERES + 3-hourly geo: available mid-2005.

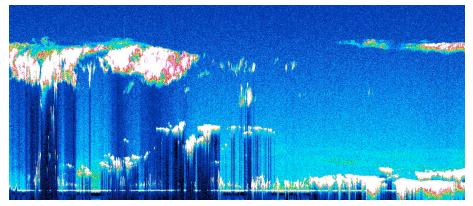
What CERES Data is Currently Available?


- Validated Products (science ready, data quality summary avail.)
- Beta Products (typically available but not validated/science ready)

Product	TRMM	Terra	Aqua
Time Period	1/98-8/98 and 3/00	3/00 forward	7/02 forward
Instantaneous Field of View	Products		
ERBE-Like ES-8	9 months	4 years	1.5 years
ADMs	yes	yes	spring 05
SSF: (TOA/Sfc/Cld/Aer)	9 months	3.8 years	fall 04
CRS (TOA/Sfc/Atm/Cld/Aer)	9 months	1.9 years	fall 04
(note: 1 degree gridded SSF is SFC,	, and gridded CRS is	FSW product)	
1 Degree Gridded Monthly	Products		
ERBE-Like ES-4/9	9 months	3.8 years	1.5 years
SRBAVG (SSF + geo)	9 months	fall, 04	spring 05
AVG (CRS + geo)	spring 05	summer 05	fall 05


Where do I get the CERES data?

- CERES Data Can be Ordered on-line through the Atmospheric Sciences Data Center at NASA Langley Research Center (URL: http://eosweb.larc.nasa.gov/)
- Each Data Product has a Data Quality Summary: dynamic summary of current understanding of accuracy and limitations (journals are too slow).
- All Data Are in HDF Format and Can be Viewed using CERES ViewHDF Software (works on Mac, PC, SGI, Sun)
- Documentation Can be Found at the CERES Website (URL: http://asd-www.larc.nasa.gov/ceres/ASDceres.html)


"A-Train" Formation for Aerosol and Cloud Vertical Profiles Atmospheric State => Aerosol/Cloud => Radiative Heating

A-train: New Cloud and Climate Observations

Cloud Monitoring

- Lidar Cloud Fraction/Height
- Self calibrating 532nm backscatter
- Nadir only sampling noise:
 0.3 Wm⁻² LW zonal annual average
- UKMO zonal climate noise: 0.3 Wm⁻²
- Greenhouse forcing: 0.6 Wm⁻²/decade

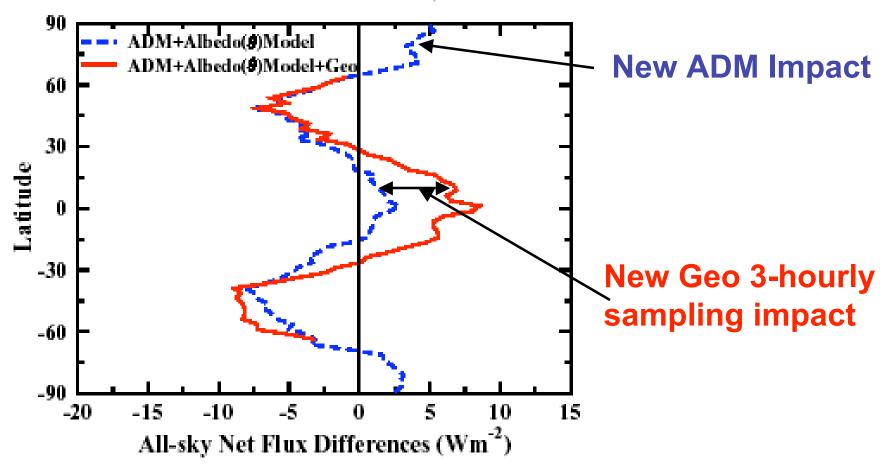
CERES vs. ERBE TOA Error Budgets

Error Source	Monthly Avg		Monthly Zon Avg		Global and Zonal		
	1σ (~ 250 km)		Difference Error		Trends (10yrs)		
			(Eqtr to	Pole)			
SW Radiation	ERBE	CERES	ERBE	CERES	ERBE	CERES	
angle sampling	3	< 1	10	< 1	< 1	< 0.2	
time sampling	4	1 - 3	3	1	<1	< 0.2	
calibration (abs)	2	1	2	1	n/a	n/a	
calibration (stab)	1	< 1	1	< 1	1	< 1	
UKMO climate model natural variability			8.0		0.3		
LW Radiation	ERBE	CERES	ERBE	CERES	ERBE	CERES	
angle sampling	1.5	< 0.5	2.5	< 1	< 0.2	< 0.1	
time sampling	4	1.5	3	1	< 0.3	< 0.1	
calibration (abs)	2	1	2	1	n/a	n/a	
calibration (stabi)	1	< 0.5	1	< 0.5	1	< 0.5	
UKMO climate model natural variability			8.0		0.2		

CERES data uses new angular models (200) by surface and cloud type (ERBE used 12).

CERES data uses 3-hourly geo narrowband data to augment time sampling (ERBE no geo)

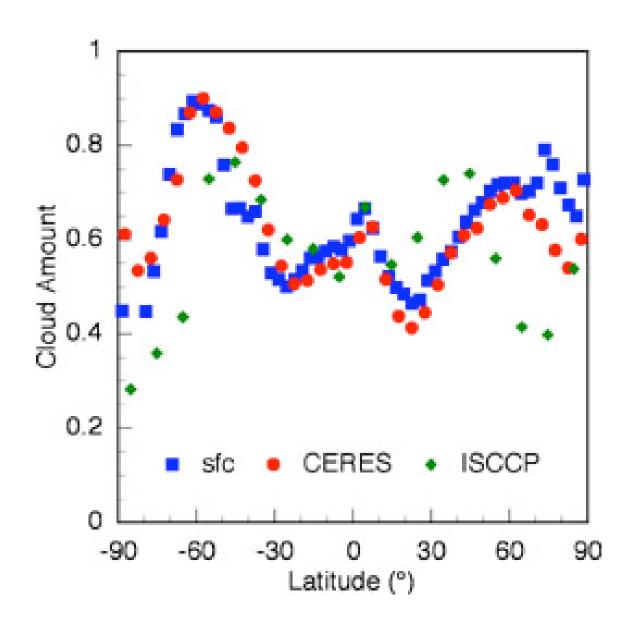
CERES calibration, characterization roughly a factor of 2 better than ERBE


CERES stability based on 3 instruments (TRMM,Terra) and assumes that only 80% of any gain changes during orbit and from ground to orbit can be removed by using on-board sources.

Backup Slides

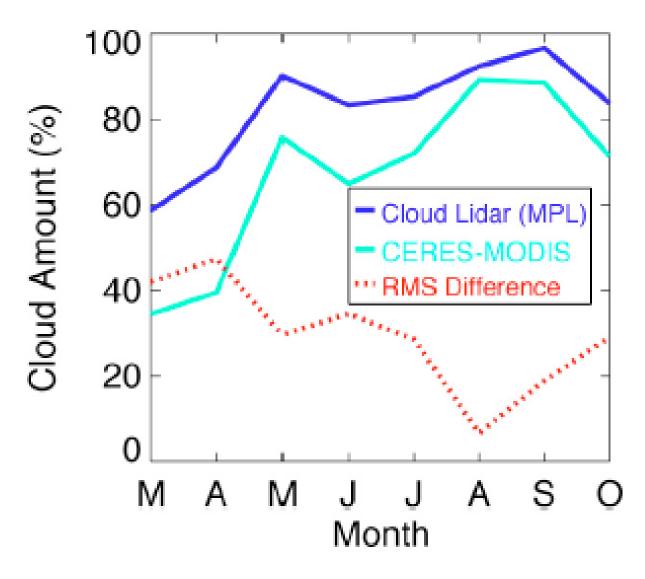
Differences of new CERES SW fluxes from ERBE-Like zonal means for March 2000. Differences up to 8 Wm⁻².

Will impact equator to pole transport, surface flux constraints with ARGO on ocean mixing processes, climate model validation



What are key CERES Issues?

- Completing CERES constraint of geo shortwave diurnal cycles
 - 3 Wm⁻² noise from time/angle differences in 1 degree monthly grid box
- Closing the global net energy budget to from 3 Wm⁻² to 1 Wm⁻²
- Determining source of shortwave 2 Wm⁻² decrease over 2000 2004
 - calibration drift? lamps claim stable to better than 0.2% or 0.2 Wm⁻²
 - coding error in production software?
 - electronics issue that affects only lamps and SW channels?
 - no obvious change in MODIS cloud properties
 - clear-sky ocean, desert, all-sky dropping 2%
 - deep convective cloud (<205K) drop 1% but MODIS claims increase in particle size explains the 1%.
 - use 4 years of CRS untuned calculated observed to look at changes and tie down versus cloud fraction, phase, surface type, latitude, etc.
- Completing 3-hourly synoptic and monthly avg.
- Adding daily average data products to 3-hourly and monthly
- Validation against GERB diurnal cycles and CALIPSO/Cloudsat

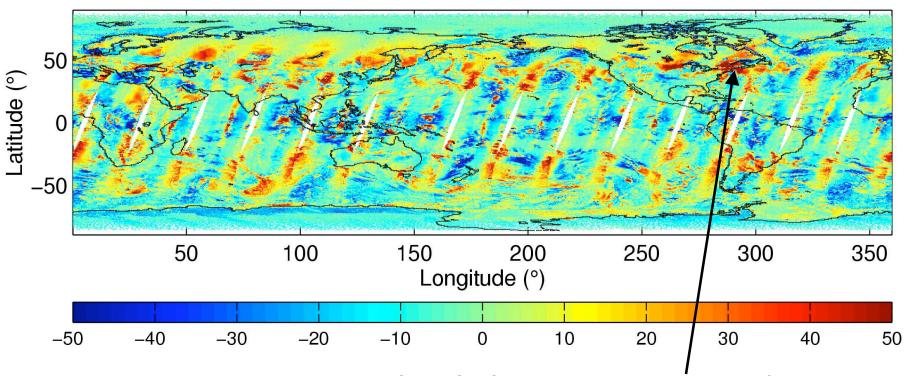

CERES Terra MODIS Cloud Fraction

Surface Observations (71-96)

CERES Terra MODIS (00-03)

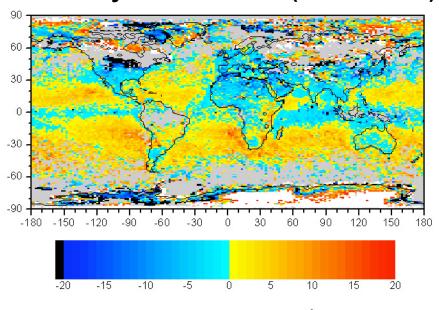
ISCCP D (83-01)

CERES MODIS Cloud Amount versus
Barrow ARM site surface lidar (uses monthly means)
March 2000 to April 2002

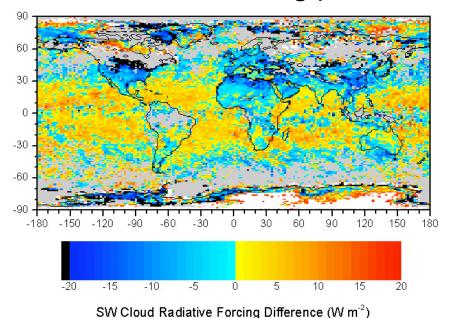

Making Angular Distribution Models

- 2 years of matched CERES, surface, aerosol, cloud, atmosphere global data (TRMM, Terra, Aqua done individually)
- Use Rotating Azimuth Plane (RAP) CERES scanner for hemispheric viewing
- Sort by:
 - Solar zenith angle
 - Viewing zenith angle
 - Viewing azimuth angle
 - Cloud properties (fraction, phase, optical depth, emissivity, height)
 - Surface properties (surface wind, vegetation type, skin temp)
 - Aerosol loading (optical depth)
 - Atmosphere state (temperature lapse rate, column water vapor)
- Determine SW, LW, Window anisotropy by angle and property
- ADMs provide instantaneous radiance to flux conversion

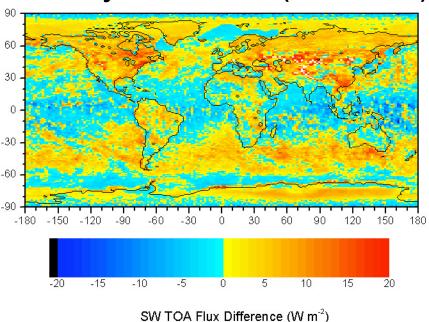
New CERES ADMs greatly improve instantaneous fluxes


Key to constraining more accurate surface fluxes Key to accurate cloud fluxes by cloud type Key to accurate matched satellite/surface fluxes for aerosol absorption

ERBE – CERES (W m⁻²)


CERES TOA instantaneous shortwave fluxes differ from ERBE by +/- 50 Wm⁻² with a strong dependence on scene type & viewing angle

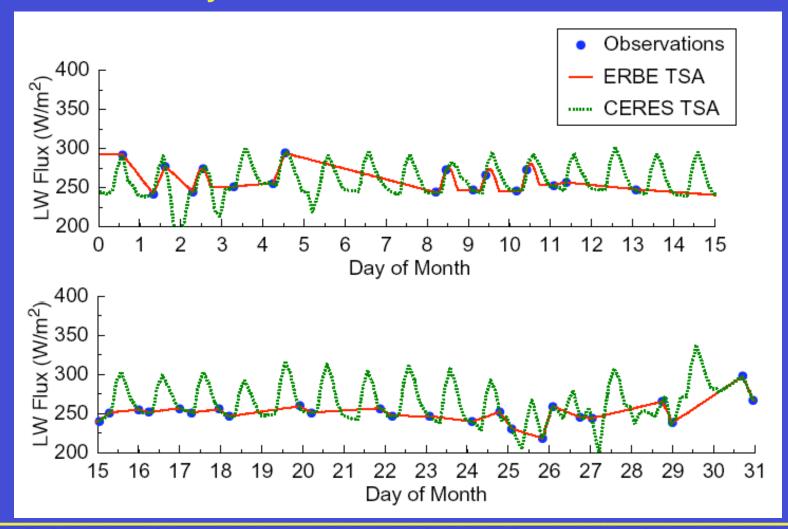
Clear-sky SW TOA Flux (March 2003)



SW TOA Flux Difference (W m⁻²)

SW TOA Cld. Rad. Forcing (March 2003)

All-sky SW TOA Flux (March 2003)

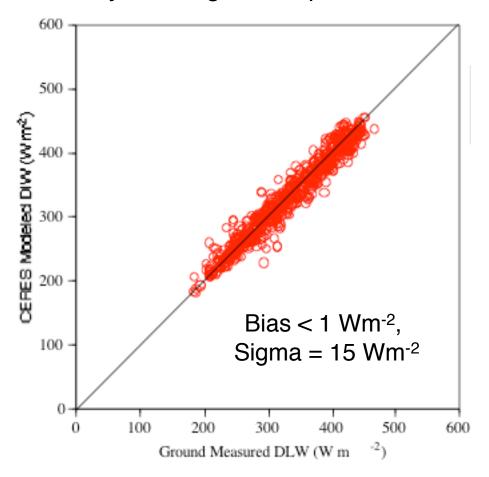


Effect of new CERES ADMs:

ERBE-Like TOA Flux (ES-8) minus
New ADM TOA Flux (SSF)

(all SW fluxes are 24-hour average)

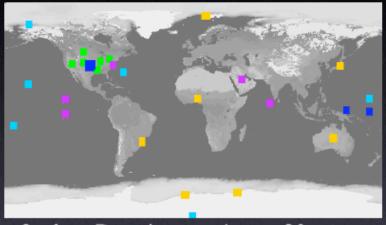
Temporal Interpolation of TOA LW Flux January 1998 E. Sahara 24.5N 20.5E



CERES Surface and Atmosphere Fluxes

- Simple Surface Fluxes on SSF, SFC, SRBAVG Products
 - Algorithms similar to Darnell et al., GEWEX SRB product
 - Use improved CERES TOA fluxes
 - Minimize use of radiative models or other model input
- 4-D Radiative Assimilation on CRS, FSW, and AVG Products
 - Use full radiative transfer (Fu-Liou with gamma function tau distn)
 - Input CERES fov matched cloud properties derived from MODIS
 - Input MODIS team aerosol data (MOD04)
 - Input NCAR MATCH 4-D aerosol assimilation of MODIS aerosol (used for composition and vertical layering)
 - Input GSFC GEOS 4.0.3 4-D weather assimilation data
 - Constrain solution to CERES fov TOA fluxes: SW, LW, 8-12um
 - Adjust least certain input for each surface/cloud/atmosphere state

ARM Central Facility, Downward LW Fluxes
CERES estimate (y-axis) vs ARM Surface Measurement (x-axis)
All-sky, 715 CERES Overflights within 1 minute,
Day and Night Overpasses, Nov 00 to Sep 01


For BSRN sites
equator to pole
Bias < 5 Wm⁻²
Instantaneous
sigma 15 to 25 Wm⁻²

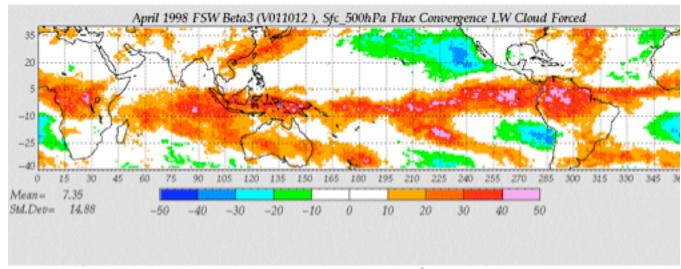
Total of 60,000 comparisons

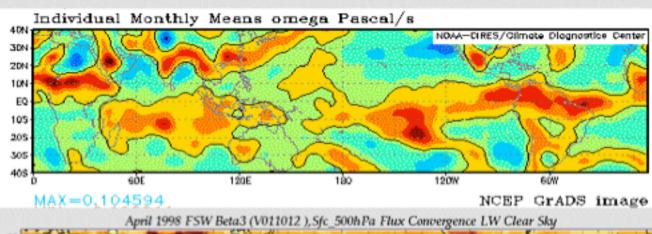
New Terra CERES CRS Data Product Instantaneous Match Surface Flux Accuracy

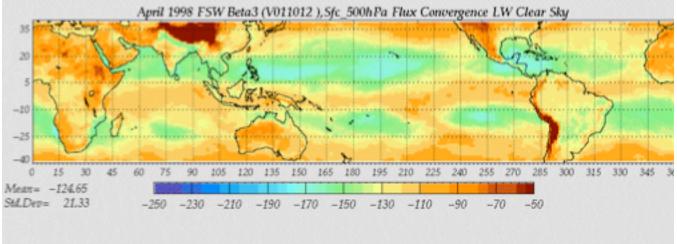
Tested against 40 BSRN, ARM SURFRAD, COVE surface sites

Surface Flux	Bias (24 hr Average)*	Aerosol Forcing (24 hr)	Sigma (24 hr Average)*	Samples
SW Down All-sky	3	-	27	3900
LW Down All-sky	- 5		22	7700
SW Down Clear-sky	0	- 8	8	1600
LW Down Clear-sky	- 9	2	15	800

- Surface Data Averaged over 30 minutes
- Uses closest CERES 20-km field of view
- MODIS clear-sky aerosols
- NCAR MATCH aerosol assimilation of MODIS for cloudy sky aerosol
- GSFC GEOS-4 assimilation atmosphere
- New gamma distribution Fu-Liou model
- No surface data used in satellite retrieval

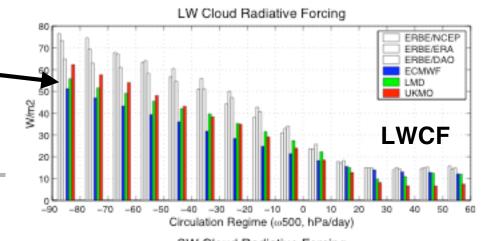

^{*} SW fluxes are scaled to 24-hour average insolation (1/3 typical Terra 10:30 am values) LW fluxes include both daytime and night-time validation results


CERES April 1998 Atmosphere Fluxes


Cloud Forcing LW Convergence Sfc to 500 hPa -50 to +50 Wm⁻²

Vertical Velocity at 700hPa red = ascent

Clear Sky LW Convergence Sfc to 500 hPa -250 to -50 Wm⁻²

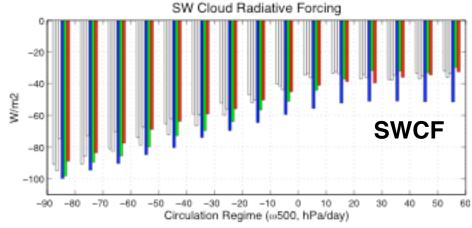


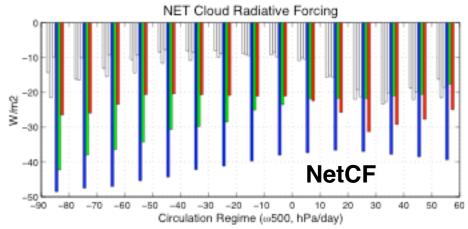
How do we take advantage of the greatly improved accuracy & integration of the CERES data?

white: ERBE/NCEP, ERA, DAO

blue: ECMWF

green: LMD red: UKMO

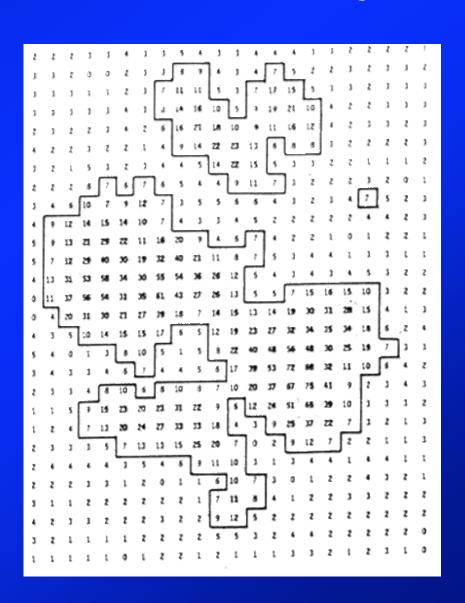


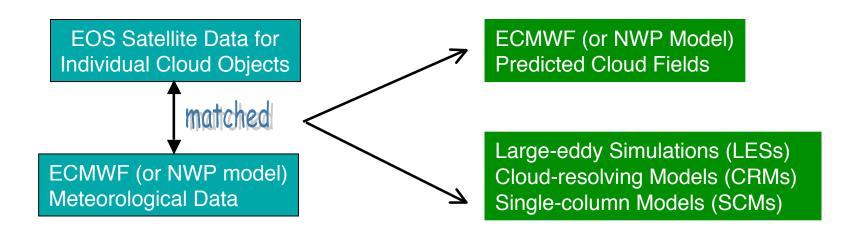

Model vs Data Intercomparisons by Dynamic Regime:

Vertical Velocity

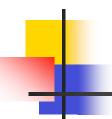
(Bony et al., 2003)

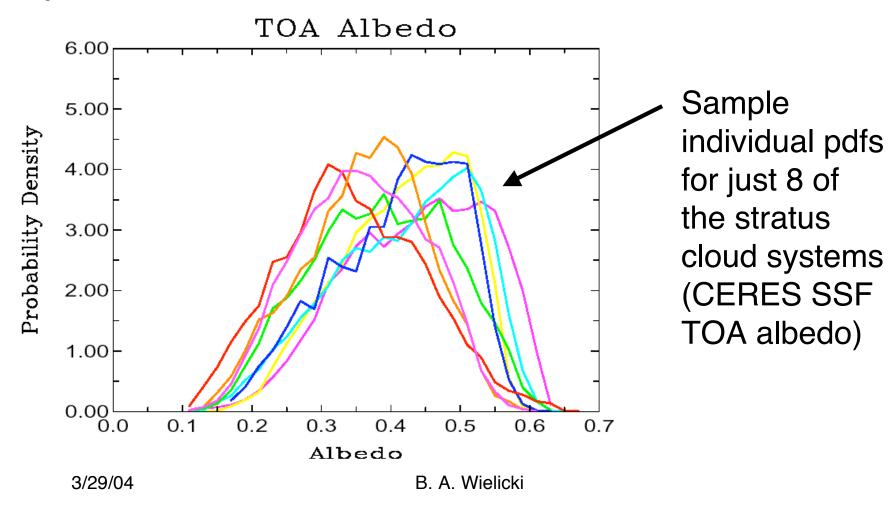
Need to redo with CERES fluxes since ERBE much less accurate by dynamic state



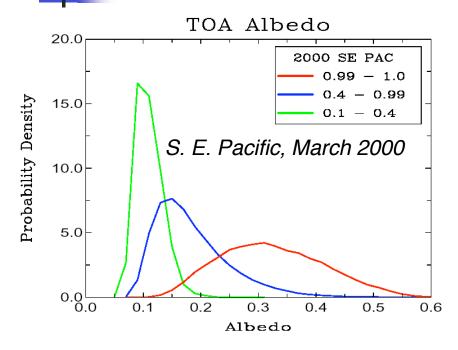

How do we study clouds at the short time/space scales of cloud physics, yet at climate accuracy?

Objectively Define Cloud Systems

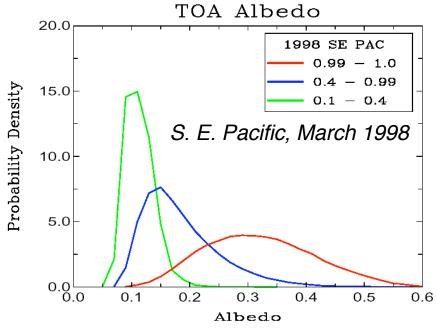

- ♣ Define a cloud system as a contiguous region of the Earth with a single dominant cloud type (e.g. stratocumulus, stratus, and deep convection)
- ♣ Determine the shapes and sizes of the cloud systems by the satellite data and by the cloud property selection criteria (Wielicki and Welch 1986)


Using satellite cloud system data for evaluating and improving CRMs and cloud parameterizations

- Analyze the statistics of subgrid characteristics (PDFs) of satellite-observed cloud objects, not GCM gridbox means
- Match the CERES SSF (Single Scanner Footprint) cloud and radiation data with ECMWF meteorological data (T, q, u, v and advective tendencies)
- Perform cloud model simulations driven by ECMWF advective tendencies;
 an iterative process of improvement and evaluation of cloud models
- Also evaluate the ECMWF parameterization using its predicted cloud fields



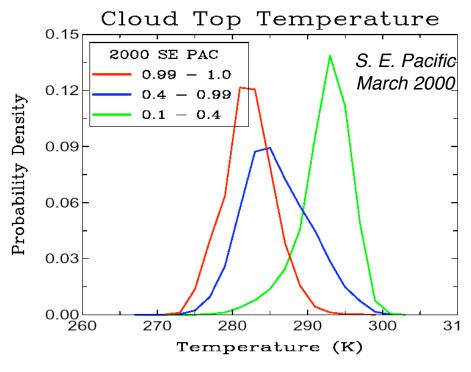
Overcast Boundary Layer: Observed CERES Cloud Object Pdfs for March, 1998



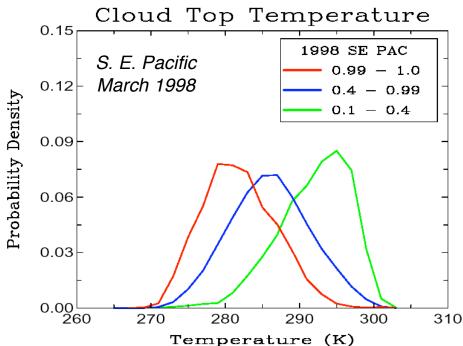
Boundary Layer: Observed CERES TOA Albedo Pdfs for March, 2000 vs March, 1998

Suggests stable properties by cloud type: next step to quantify how stable....

No apparent difference in the S.E. Pacific, even though the Walker Cell strength reduced, Hadley cell strengthened...

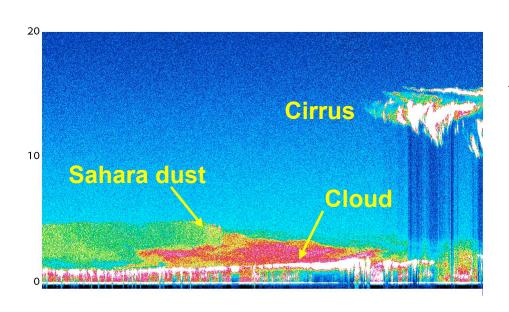


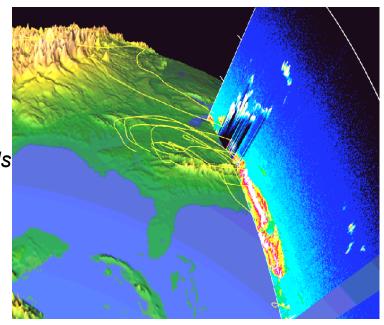
3/29/04


B. A. Wielicki

Boundary Layer: Observed CERES Cloud Top Temperature Pdfs for March, 2000 vs March, 1998

March 2000: Colder SST (La Nina) & Colder Cloud Top Temperature, but Narrower Frequency Distribution

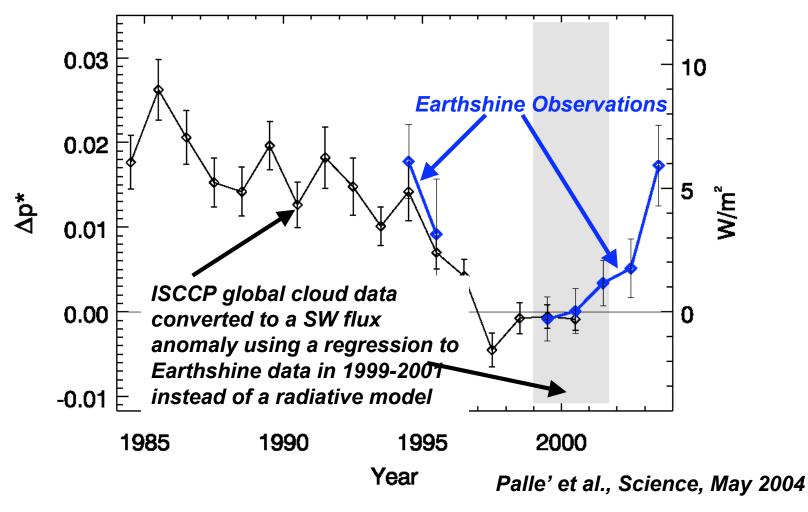

3/29/04


Ε

The Vertical: CALIPSO Aerosol

Aerosol Direct Radiative Forcing

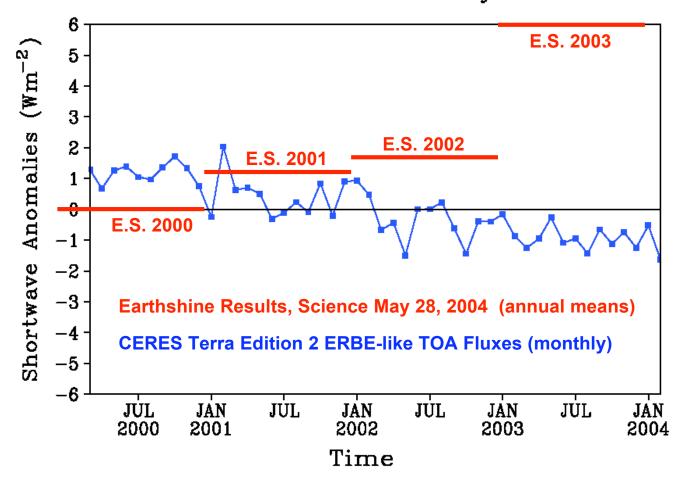
- λ CALIPSO aerosol profiles
 - enable back-trajectories to aerosol sources
- λ 4-D assimilation of aerosol profiles
 - constrains uncertainties in source/transport models
 - partitioning of natural, anthropogenic forcings
- λ A-train: CALIPSO + MODIS + CERES
 - improved surface SW fluxes



Aerosol Indirect Radiative Forcing

- CALIPSO cloud and aerosol profiles
 - unique ability to determine if cloud and aerosol are in the same layer.
- A-train: add MODIS + CERES
 - cloud microphysics, optics, radiation
- A-train: add AMSR, Cloudsat radar
 - adds rain, LWP plus drizzle.

Aerosol Forcing and Cloud Feedback Approaches


- λ Cloud Feedback
- λ Atmosphere => Cloud => Radiation => Atmosphere
- **Aerosol Direct Radiative Forcing**
- Aerosol Source => Advection => Sinks => Radiation => Atmosphere
- **Aerosol Indirect Radiative Forcing**
- Aerosol Source => Advection => Sinks => Atmosphere => Cloud => Radiation => Atmosphere
- Aerosol Chemistry must be tracked by source region
- Aerosol indirect effect must be sorted by atmosphere dynamic state which dominates cloud properties

Key earthshine concerns:

- observation is near direct backscatter peak, angle varies with lunar libration
- only 1/3 of the earth viewed
- varying CCD detectors used depending on libration: gain aliasing
- visible albedo, but interpreted as if broadband: exaggerates cloud change
- albedo and earthshine not uniquely related: can change one without the other: just spatially redistribute cloud within the large earthshine viewing region

CERES/Terra Global Mean Broadband Anomalies
March 2000 to February 2004

Conclusion: CERES and Earthshine show no agreement on global albedo